Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bruno Therrien,* Stéphane Frein and Georg Süss-Fink

Institut de Chimie, Université de Neuchâtel,
Case postale 2, CH-2007 Neuchâtel,
Switzerland

Correspondence e-mail:
bruno.therrien@unine.ch

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.022$
$w R$ factor $=0.049$
Data-to-parameter ratio $=18.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
μ-Chloro- μ-hydrido-bis[chloro(η^{6} - p-cymene)ruthenium $(\mathrm{II})](R u-R u)$: a second polymorph

The title dinuclear complex, $\left[\mathrm{Ru}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{14}\right) \mathrm{Cl}_{4} \mathrm{H}\right]$, has twofold symmetry. The terminal Cl atom interacts with three $\mathrm{C}-\mathrm{H} \mathrm{H}$ atoms of symmetry-related neighbouring molecules. These interactions play a key role in the packing arrangement.

Comment

The title compound, (I), was first obtained by Bennett \& Ennett (1984) from the reaction of $\left[\left(p-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Pr}^{i}\right) \mathrm{RuCl}(\mu-\right.$ $\mathrm{Cl})]_{2}$ with molecular hydrogen; the single-crystal X-ray structure analysis of (I), crystallized from a benzene solution, has been reported by Süss-Fink et al. (2000). In contrast with that crystal structure in the orthorhombic space group $P b c a$, we have analysed crystals of (I), which we had obtained from a dichloromethane solution. These crystals belong to the monoclinic space group $C 2 / c$, thus giving rise to a completely different packing arrangement from that in the crystals obtained from benzene. Although the molecular structure (bond lengths and angles) of (I) is almost identical to the earlier reported structure, the intermolecular interactions are quite different.

(I)

The dinuclear title complex, in which the bridging chloride and hydride ligands lie on a twofold axis, is shown in Fig. 1. The metal atom possesses one terminal and one bridging chloride; the bridging $\mathrm{Ru}-\mathrm{Cl}$ distance is 2.4185 (14) \AA, while the terminal $\mathrm{Ru}-\mathrm{Cl}$ distance is 2.4021 (7) \AA. The bridging $\mathrm{Ru}-\mathrm{Cl}$ distance is shorter than that observed in other areneruthenium complexes possessing μ - Cl ligands (McCormick \& Gleason, 1988; Gupta et al., 1997; Therrien et al., 1998; Bown \& Bennett, 1999; Vieille-Petit et al., 2002). The Ru-Ru distance of 2.9598 (7) \AA is in accordance with a metal-metal single bond, and is comparable with the isoelectronic hydrido-trichloro complexes $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{H})\right]$ (Churchill \& Wei-Yang $\mathrm{Ni}, \quad 1973)$ and $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ir}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{H})\right]$ (Churchill \& Julis, 1977).

Interestingly, the terminal Cl atom interacts with three C H H atoms of two symmetry-related neighbouring molecules. These interactions are shown in Fig. 2 and summarized in Table 2. In the orthorhombic polymorph (Süss-Fink et al.,

Received 4 October 2004 Accepted 13 October 2004 Online 22 October 2004
2000), the terminal Cl atoms also interact with three $\mathrm{C}-\mathrm{H} \mathrm{H}$ atoms, but in that case with three symmetry-related neighbouring molecules. Furthermore, in the orthorhombic form, the dinuclear complex forms one-dimensional supramolecular chains through π-stacking interactions. Similar interactions are not observed in (I). Instead, the p-cymene moiety is surrounded by methyl groups. The closest C atoms are the isopropyl methyl C atoms, 3.77 and $4.31 \AA$ from the benzene ring centroid of the p-cymene ligand.

Experimental

The compound was prepared as described by Bennett \& Ennett (1984), and this monoclinic form was obtained by crystallization from dichloromethane solution.

Crystal data

$\left[\mathrm{Ru}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{14}\right) \mathrm{Cl}_{4} \mathrm{H}\right]$
$M_{r}=577.92$
Monoclinic, $C 2 / c$
$a=14.782$ (3) A
$b=17.431$ (3) \AA
$c=10.425$ (2) \AA
$\beta=124.16$ (3) ${ }^{\circ}$
$V=2222.7(11) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS diffractometer φ scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.500, T_{\text {max }}=0.786$
8650 measured reflections
2163 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.049$
$S=0.92$
2163 reflections
119 parameters
$D_{x}=1.727 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8000
reflections
$\theta=2.0-25.9^{\circ}$
$\mu=1.72 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Block, orange
$0.36 \times 0.22 \times 0.14 \mathrm{~mm}$

1749 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=25.9^{\circ}$
$h=-18 \rightarrow 18$
$k=-21 \rightarrow 21$
$l=-12 \rightarrow 12$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0296 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.55 \mathrm{e} \mathrm{A}^{-3}$

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by $\left(1-x, y, \frac{3}{2}-z\right)$.

Figure 2
The intermolecular $\mathrm{Cl} \cdots \mathrm{H}$ interactions (dashed lines) observed in (I) (MERCURY; Bruno et al., 2002).

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.93	2.95	$3.758(3)$	146
$\mathrm{C}^{2} 0-\mathrm{H} 10 B \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.96	2.93	$3.770(3)$	147
$\mathrm{C}^{2}-\mathrm{H} 6 \cdots \mathrm{Cl}^{\mathrm{iii}}$	0.93	2.94	$3.498(3)$	120

Symmetry codes: (ii) $1-x, 2-y, 2-z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$.
included in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom).

Data collection: EXPOSE in IPDS Software (Stoe \& Cie, 2000); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Swiss National Science Foundation (grant No. 20-61227-00). We thank Professor H.

metal-organic papers

Stoeckli-Evans for helpful discussions and access to X-ray facilities.

References

Bennett, M. A. \& Ennett, J. P. (1984). Organometallics, 3, 1365-1374.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bown, M. \& Bennett, M. A. (1999). Acta Cryst. C55, 852-854.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Churchill, M. R. \& Wei-Yang Ni, S. (1973). J. Am. Chem. Soc. 95, 2150-2155.
Churchill, M. R. \& Julis, S. A. (1977). Inorg. Chem. 16, 1488-1494.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gupta, H. K., Lock, P. E., Hughes, D. W. \& McGlinchey, M. J. (1997). Organometallics, 16, 4355-4361
McCormick, F. B. \& Gleason, W. B. (1988). Acta Cryst. C44, 603-605.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2000). IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany. Süss-Fink, G., Garcia Fidalgo, E., Neels A. \& Stoeckli-Evans, H. (2000). J. Organomet. Chem. 602, 188-192.
Therrien, B., Ward, T. R., Pilkington, M., Hoffmann, C., Gilardoni, F. \& Weber, J. (1998). Organometallics, 17, 330-337.

Vieille-Petit, L., Therrien, B. \& Süss-Fink, G. (2002). Acta Cryst. E58, m656m657.

[^0]: (C) 2004 International Union of Crystallography All rights reserved

